Tuesday, July 7, 2015

Various forms of N-S equations

1) Lamb’s form of N-S equation:-
The N-S equation of motion for a viscous incompressible fluid is
                    $\frac{D\overrightarrow{q}}{Dt}=\overrightarrow{F}-\frac{\nabla p}{\rho }+\upsilon {{\nabla }^{2}}\overrightarrow{q}$
    or, $\frac{\partial \vec{q}}{\partial t}+\left( \vec{q}.\nabla  \right)\vec{q}=\vec{F}-\frac{\nabla p}{\rho }+\upsilon {{\nabla }^{2}}\overrightarrow{q}$……(1)               

Where  $\vec{q}=(u,v,w)$
                $\vec{F}=(X,Y,Z)$
                 $\nabla ={{(}^{\partial }}{{/}_{\partial x}}{{,}^{\partial }}{{/}_{\partial y}}{{,}^{\partial }}{{/}_{\partial z}})$
               r = Pressure
               u= Kinematic viscosity

$or,\frac{\partial \vec{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \nabla \times \overrightarrow{q} \right)=\vec{F}-\frac{\nabla p}{\rho }+\upsilon {{\nabla }^{2}}\overrightarrow{q}$  [ By Lagrange’s vector identity]
or, , $\frac{\partial \vec{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \widetilde{w} \right)=\vec{F}-\frac{\nabla p}{\rho }+\upsilon {{\nabla }^{2}}\overrightarrow{q}$ 

where  $\widetilde{w}=\nabla \times \overrightarrow{q}$ as vorticity vector
Or, \[\frac{\partial \vec{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)+\widetilde{w}\times \overrightarrow{q}=\vec{F}-\frac{\nabla p}{\rho }-\upsilon {{\nabla }^{2}}\overrightarrow{q}\]  which is known as Lamb’s form of N-S equation                    
2) If external forces form a conservative field of force then F=-ÑW, where W is potential 
     function.
The lamb’s form of N-S equation now becomes
\[or,\frac{\partial \vec{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \widetilde{w}=-\nabla \Omega -\frac{\nabla p}{\rho }-\upsilon {{\nabla }^{2}}\overrightarrow{q}\]
\[or,\frac{\partial \vec{q}}{\partial t}-\overrightarrow{q}\times \widetilde{w}=-\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}}+\Omega +\frac{p}{\rho } \right)-\upsilon {{\nabla }^{2}}\overrightarrow{q}\]$$
But,
\[{{\nabla }^{2}}\overrightarrow{q}=\nabla (\nabla .\overrightarrow{q})-\nabla \times \left( \nabla \times \overrightarrow{q} \right)=0-\nabla \times \left( \nabla \times \overrightarrow{q} \right)=-\nabla \times \widetilde{w}\]for incompressible fluid.
The above equation reduces to
\[\frac{\partial \vec{q}}{\partial t}-\overrightarrow{q}\times \widetilde{w}=-\nabla \left( \frac{p}{\rho }+\Omega +\frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\upsilon \nabla \times \widetilde{w}\]which is another form of Lamb’s form of N-S equation under the external force is conservative.
3) When there exist a functional relation between pressure and density, the N-S equation of motion for compressible viscous fluid is
$\frac{D\overrightarrow{q}}{Dt}=\overrightarrow{F}-\int{\frac{\partial \rho }{\rho }}+\upsilon {{\nabla }^{2}}\overrightarrow{q}+\frac{\upsilon }{3}\nabla (\nabla .\overrightarrow{q})$….(1)

Where  $\vec{q}=(u,v,w)$
                $\vec{F}=(X,Y,Z)$
                 $\nabla ={{(}^{\partial }}{{/}_{\partial x}}{{,}^{\partial }}{{/}_{\partial y}}{{,}^{\partial }}{{/}_{\partial z}})$

  $\frac{D\vec{q}}{Dt}=\frac{\partial \vec{q}}{\partial t}+\left( \vec{q}.\nabla  \right)\vec{q}$
                   $=\frac{\partial \overrightarrow{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \nabla \times \overrightarrow{q} \right)$   

   [∵$\left( \overrightarrow{q}.\nabla  \right)\overrightarrow{q}=\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \nabla \times \overrightarrow{q} \right)$]     \[and\nabla \times \left( \nabla \times \overrightarrow{q} \right)=\nabla \left( \nabla .\overrightarrow{q} \right)-{{\nabla }^{2}}\overrightarrow{q}\Leftrightarrow {{\nabla }^{2}}\overrightarrow{q}=\nabla \left( \nabla .\overrightarrow{q} \right)-\nabla \times \left( \nabla \times \overrightarrow{q} \right)\]  
Then the equarion (1) reduces to
$\frac{\partial \overrightarrow{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \nabla \times \overrightarrow{q} \right)=\overrightarrow{F}-\int{\frac{\partial \rho }{\rho }}+\upsilon \left\{ \nabla \left( \nabla .\overrightarrow{q} \right)-\nabla \times \left( \nabla \times \overrightarrow{q} \right) \right\}+\frac{\upsilon }{3}\nabla (\nabla .\overrightarrow{q})$

$or,\frac{\partial \overrightarrow{q}}{\partial t}+\nabla \left( \frac{1}{2}{{\overrightarrow{q}}^{2}} \right)-\overrightarrow{q}\times \left( \nabla \times \overrightarrow{q} \right)=\overrightarrow{F}-\int{\frac{\partial \rho }{\rho }}-\upsilon \nabla \times \left( \nabla \times \overrightarrow{q} \right)+\frac{4\upsilon }{3}\nabla (\nabla .\overrightarrow{q})$

No comments:

Post a Comment