Tuesday, May 29, 2018

Abstract algebra


1.      Find g.c.d, l.c.m and x,y such that d= ax+by, d=(a,b) where

i)        a= 322 and b=770
Solution:
              770 = 2´322+126
              322 = 2´126+70
              126 = 1´70+56
                70 = 1´56+14
                56 = 4´14+0
Hence g.c.d =d(770,322)=14
         Again
                  dl=ab
                 14´l= 770´322
                 \ l = 17710.
Now for x and y
      126= 770-2´322
      70= 322-2´126
           = 322-2´(770-2´322)
           = 1´322-2´770+4´322
           = 5´322-2´770
       56= 126-1´70
           = 770-2´322-1´(5´322-2´770)
           = 770-2´322-5´322+2´770
           = 3´770-7´322
       14= 70-1´56
           = 5´322-2´770-1´(3´770-7´322)
           = 5´322-2´770-3´770+7´322
           =-5´770+12´322  
\ x = -5 and y= 12.

ii)      a= 11+7i and b= 3+7i in Z(i) where 
Solution:
      11+7i= (1-i)´(3+7i)+(1+3i)………..(1)
      3+7i = (2-i)´(1+3i)+2i-2…………(2)
      1+3i = (1-i)´(2i-2)+(i-1)………….(3)
      2i-2 = 2´(i-1)+0
Hence g.c.d = d(11+7i,3+7i) = i-1
And we know

For x and y
1+3i= (11+7i)- (1-i)´(3+7i)     [ from(1)]
(2i-2)(1-i)= (1+3i)-(i-1)            [ from(3)]
Multiply (1) by 2-i
Then (11+7i)(2-i)= {(1-i)´(3+7i)+(1+3i)}(2-i)
     Or, (11+7i)(2-i)= (1-i)(2-i)´(3+7i)+(1+3i)(2-i)
     Or, (11+7i)(2-i)= (2-i-2i-1)(3+7i)+(1+3i)(2-i)
     Or, (11+7i)(2-i)= (1-3i)(3+7i)+(1+3i)(2-i)
     Or, (1+3i)(2-i)= (11+7i)(2-i)- (1-3i)(3+7i)………….(4)

Multiplying (2) by (1-i)
(3+7i)(1-i) = (2-i)(1-i)´(1+3i)+(2i-2)(1-i)
                  = (1-i)´(1+3i)(2-i)+ (1+3i)-(i-1)
(i-1) = (1-i){(11+7i)(2-i)- (1-3i)(3+7i)}+ (11+7i)- (1-i)´(3+7i)-(1-i)(3+7i)  [ from(1),(3)&(4)]
 =[(1-i) (2-i)+1](11+7i)-[(1-i)(1-3i)+(1-i)+(1-i)] (3+7i)
= (2-i-2i-1+1) (11+7i) -[1-3i-i-3+2-2i] (3+7i)
= (2-3i) (11+7i)- (-6i) (3+7i)
= (2-3i) (11+7i)+6i (3+7i)
Hence x = 2-3i
             Y = 6i

1.      Find the multiplicative inverse of  

       where a = 17.
Solution:
        Here a=17, n= 27
    Now 27= 1´17+10
             17= 1´10+7
             10= 1´7+3
               7= 2´3+1
Now 10=27-1´17
           7= 17-1´10
             = 17-1´(27-1´17)
             = 17-1´27+1´17
             = 2´17-1´27
         3= 10-1´7
           = 27-1´17-1´( 2´17-1´27)
           = 27-1´17-2´17+1´27
           = 2´27-3´17
         1= 7-2´
           = 2´17-1´27-2´( 2´27-3´17)
           = 2´17-1´27-4´27+6´17
           = 8´17-5´27
       
   Hence, Multiplicative inverse of  

1.       Compute the remainder when 350 is divided by 37.

Solution:
      We know 34 º 7mod37  
                        38 º 12mod37
                         316º 33mod37
                         332º 16mod37
   So 38.332 = 340º 7mod37
   Again,
                   35º 21mod37
                   310º 34mod37
So 350=340.310º 16mod 37

Hence the remainder is 16.
Rough part
34=81,       37)81(2
                           74
                             7
72=49,        37)49(1
                            37
                            12
122=144,  37)144(3
                           111
                             33
332=1089, 37)1089(29
         74
         349
         333
           16
12´16=192
37)192(5
       185
           7
35=243
37)243(6
       222
          21
212=441
37)441(11
       37
          71
          37
          34
Lastly 34´7=238
37)238(6
     222
       16 is the ans.




2.      Does the set of all matrices of the form G=,  R under matrices multiplication form a group? Justify your answer.
Solution:
i)        Closure property
        Let A= and B= for all  R
Now AB=  
           
  =
  =

ii)      Associative property
  Let A= ,B= and C= 
Then A(BC)=
                    = 
                    =  
Again
        (AB)C=
                  =
                  =
Hence A(BC)= (AB)C

iii)    Exixtence of identity
For all  and A=there exist  i.e I= = such that
AI=A

iv)    Existence of inverse
For all A= there exist A-I=  = ==
Such that A.A-I=I

Hence it forms a group under matrix multiplication.

3.      Prove that the set G=Q-{1} is a group under binary operation * defined by a*b = a+b-ab for all a,b G.

Solution:

i)        Closure law :
                For all a,bÎG , a*b=a+b-abÎG

ii)      Associative property
                   For all a,b,cÎG, a*(b*c)=a*(b+c-bc)=a+(b+c-bc)-a(b+c-bc)=a+b+c-bc-ab-ac+abc
                                                (a*b)*c= (a+b-ab)*c= (a+b-ab)+c-(a+b-ab).c= a+b-ab+c-ac-bc+abc
So a*(b*c)= (a*b)*c

iii)    Existence of Identity
                 For all aÎG $ eÎG such that a*e=a
                                                                 or, a+e-ae=a
                                                                 or, e(1-a)=0
                                                          either e=0 or a=1 but a1
             so e=0 ÎG.

iv)    Existence of inverse
                For all aÎG $ bÎG such that a*b=e=0
                                                                  a+b-ab=0
                                                                   b(1-a)=-a
                                                                    \b= ÎG

Hence it forms a group under * operation.




No comments:

Post a Comment